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SUMMARY

The underwater acoustic and hf radio channels have dispersive characteristics which
inhibit the use of high data rate modems. The refracting and reflecting portions of the trans-

V• mission media not only distort the shape of the transmitted bits but also add delayed versions.
On high data rate communication links these echoes cause the pulses to interfere with each
other, resulting in high error rates. The problem is further complicated because the channel
characteristics are time as well as geometry dependent.

In order to alleviate these problems communication design engineers of the 1950s
limited the channel data rate (bandwidth) so that the pulse duration would be longer than
the maximum time delay spread expected; increases in data rate beyond this limit were pro-
vided by adding more parallel data channels. Thus, parallel bit streams were an early and
practical solution although one which could not overcome frequency selective fading.

More recently pressure has been mounting to return to serial type modems with the
advent of EW requirements for wideband (spread spectrum) modulations. As a consequence,
techniques for processing these signals have been developed with promising results. One such
technique is the Maximum Likelihood Sequence Estimation (MLSE) algorithm, which is opti-
mum for minimizing the probability of error on channels with intersymbol interference. This
algorithin was derived assuming ideal conditions; ie, the channel characteristics were assumed
known (to the decoder) and time invariant.

We begin this report by describing the intuitive and mathematical basis for the MLSE
algorithm. In the context of dispersive channel characteristics, we assume that the dispersive
channel can be modeled as a convolutional encoder and with the use ,of a clever decoder (the
Viterbi algorithm) the message bits can be extracted. Under conditions of stationary time
statistics and known channel characteristics we show that the MLSE algorithm performs ex-
ceptionally well. Under some conditions it is 20 dB better than a 16 parallel tone signaling
scheme. In fact, for some nonfading multipath channels, it performs nearly as well as binary
PSK on a nondispersive (no multipath) channel.

In the nonideal world of Navy communications (underwater acoustic and hf radio
channel) the channel characteristics are unknown to the receiver. One approach to this prob-
lem, and the one taken here, is to attach to the transmitted message a preamble consisting of
a known bit sequence. The receiver uses this bit sequence to estimate the channel response.
The MLSE algorithm is then applied to the received data using the estimated channel response
in lieu of the actual. To test the effectiveness of our channel estimation procedures, we com-
pare the performance, in terms of bit errors, of the MLSE under ideal (known channel charac-
teristics) and realistic (estimated channel characteristics) conditions.

We examine two algorithms for estimating the channel response, the Widrow-Hoff
LMS and the Kalman Filter (KF) algorithm. Equations describing these algorithms are
presented. Each filter has its own advantage. The LMS requires less computational complex-
ity, the KF is more accurate (optimal mean square error filter) and converges more rapidly.
An evaluation of each filter is made by simulating the case in which the channel exhibits one
delayed bit for every bit sent. The bit error performance, as exhibited by the MLSE algorithm,
is essentially equivalent to that achieved previously under the ideal conditions for either the
LMS or the KF estimator. Thus, for the specific cases undertaken in this study the use of
either LMS or KF has been shown to be practical for estimating channel dispersive characteris-
tics (delayed signal replicas).
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The approach of using a preamble for estimating channel response on a time invariant
channel can be extended to channels exhibiting time variations. Updates to the matched
filter and metrics are performed so that the channel distortion is more precisely represented
by the estimated encoding. This is done periodically by injecting a short, known sequence
into the message stream.

The adaptive MLSE was tested on signals recorded during an hf field test. These
signals exhibit multipath time dispersion and time variations. The results of several of these
tests are given in this report to illustrate the effect of time variations on the MLSE perform-
ance. Two types of fading are present in the examples: nonfading and fast, shallow fading.
The adaptive MLSE can perform nearly as well on nonfading channels as it can on nondisper-
sive, nonfading channels. For the nonfading channel only infrequent channel estimation
updates are used. For fast, shallow fading channels, the adaptive MLSE does nearly as well
but requires frequent updates to the channel estimate.

For channels with moderate time dispersion and slow fade rates, the adaptive MLSE
/is an effective technique for providing reliable communication at high data rates. For these

channels, the output bit error rate will be lower than either the Decision Feedback Equalizer
or the parallel tone modulation scheme. The drawback of the adaptive MLSE is its imple-
mentation complexity which grows exponentially with multiplath time dispersion.

Because of the large time dispersion and fast fading rates found on some military
communication channels, the adaptive MLSE described here will not be practical. It is
recommended that a sequential decoding algorithm with a continuous channel tracking
capability be developed. A careful comparison with other signaling schemes for multipath
channels, such as Decision Feedback Equalizer and parallel tone modulation formats, would
provide valuable information to system design engineers.
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E a e s . INTRODUCTION

Essential to the successful execution of future command and control of the Navy
task force is rapid and reliable communication among ships, submarines, and shore elements.
Communication nets will be required to carry large volumes of message traffic, data intelli-
gence, and digital secure voice. Communication links, therefore, must be able to operate re-
liably at high data rates.

However, many of the communication channels that can provide the task force with
the communications range and area coverage, such as hf and underwater acoustics, are de-
graded by multipath and time dispersion. Short bit durations associated with high data rates
are typically several times less than the duration of the dispersion. Serial transmission of the
bits would result in severe intersymbol interference. Use of demodulators designed for a non-
dispersive channel would result in an unacceptably high error rate.

Historically, systems designed for these channels use long symbol durations to mini-
mize the pulse distortion and intersymbol interference. The long pulse durations restrict com-
munications to low data rates. To obtain high data rates, several pulses are transmitted in
parallel on separate tones. Even though this signal format minimizes intersymbol interference,
multipath channels still cause high error rates because of selective frequency fading and dop-
pler spread.

During the past 10 years considerable progress has been achieved toward mitigating
intersymbol interference of digital serial transmissions caused by multipath and time dis-
persion. One of the most impressive algorithms for processing the received signal is the Maxi-
mum Likelihood Sequence Estimation (MLSE) algorithm (ref I). This algorithm is shown to
be optimum for intersymbol interference.

In section II we derive the MLSE algorithm by using a waveform encoding point of
view. It is felt that this derivation is more intuitive than the previous purely mathematical
derivations (ref 1, 2, 3). For this derivation, the channel response is assumed known. Com-puter simulation results for simple two-path channels are given in section III where the results

are compared with the performance of the parallel tone modem now used by the Navy. In
section IV we address the realistic situation in which the channel response is unknown. The
approach taken is to precede the message with a preamble consisting of a known bit sequence

IG David Fornery, Jr, Maximum-Likelihood Sequence Estimation of Digital Sequences in the
Presence of Intersymbol Interference, IEEE Transactions on Information Theory, vol IT-I 8, no 3.
May 1972

2 G Ungerboeck, Adaptive Maximum Likelihood Receiver for Carrier Modulated Datatransmission

Systems, IEEE Transactions on Communications, vol COMM-22, no 5, May 1974
3G Ungerboeck, Linear Receiver and Maximum-Likelihood Sequence Receiver for Synchronous

Data Signals, IEEE International Communications Conference Proceedings, June 1973
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and to use this preamble at the receiver to estimate the channel impulse response (ref 4-7).
Two estimation algorithms are examined and simulation results are presented. Section V dis-
cusses an approach to extend the channel estimation technique to channels that are time
variant. We present the results of applying this technique to signals transmitted over an hf
link and recorded during an hf field test. Several examples are given to illustrate the effects
of time variant multipath channels and nongaussian noise.

i1. MLSE ALGORITHM DERIVATION

In this section we derive the MLSE algorithm by drawing an analogy between time
dispersive channels and convolutional encoders. The optimum decoding algorithm (minimiz-
ing probability of error) for convolutional codes is known to be the Viterbi algorithm. In
order to implement the Viterbi algorithm, a recursive relationship must be developed for com-
puting the log likelihood ratio (metric) for the received message. The recursive relationship
must be able to update the metric by using only the part of the received waveform that
occurred during the last bit interval. Two such recursive algorithms are derived here. They
are equivalent but differ in the complexity of their implementation.

The basic model used to represent the data communication system is shown in figure
1. The data sequence, I n , modulates a basic transmitter pulse, x(t), at a rate of l/T.

N-1
S(t) In x(t - nT) (1)

n=0

where T is the pulse duration and In the information symbol. Although several types of
modulation can be used with the algorithms derived for intersymbol interference, binary
phase shift keying (PSK) has been selected here, where In will be either +1 or -1.

For multipath dispersive channels the response to the basic transmitted pulse can be
written as

L

z(t) = Ip (t) x(t-rk) (2)

4Morley, RE, Jr, DL Snyder, Maximum Likelihood Sequence Estimation for Randomly Dispersive
Channels, IEEE Transactions on Communications, vol COM-27, no 6, June 1979

5 Hoff, LE, RL Merk, Soft Decision Demodulation Using the Viterbi Algorithm, NOSC Technical

Note 544, September 1978
6Norvell, S, Channel Estimation for the HF Channel, NOSC Technical Note 545, September 1978
7Hoff, LE, Norvell, S, Adaptive Maximum Likelihood Sequence Estimation for the HF Channel,

13th Asilomar Conference on Circuits, Systems and Computers, November 1979
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N (t)

Figure 1. Model of data communication system.

where aq(t) is the complex gain of the kth path at time t, rp the time delay of the Qth path,
and Lp the number of paths. If the channel is time invariant, ao(t) becomes simply oeQ, which
does not change with time. In this section we derive the MLSE algorithm assuming the
channel is time invariant. In section V we extend the algorithm to slowly varying channels
and present some results of applying the technique to signals recorded from an hf channel.

A specific message format used for simulating transmitted messages is shown in figure
2. It consists of a noise interval and a signaling interval. The signaling interval consists of a
preamble, message text, and a tail sequence. The preamble is known at both the receiver and
the transmitter. It is used to set up the matched filter and the metrics and to initialize the
Viterbi decoder.

DISPERSIVE CHANNELS AND WAVEFORM ENCODERS

Since we are assuming a time invariant channel the channel response to the basic trans-
mitter pulse x(t) in equation (2) can be written as

Lp
z Lt U x(t - Tr) (3)

which is assumed causal, finite in duration, and spanning L + I symbol intervals. Equation
(3) differs from equation (2) in that a2 is now assumed constant over the interval of interest.
Using the principle of linearity, the channel output waveform for the first K + I bits is

Z(t; I) I. z(t -jT) 0 <t < (K+ L+ I)T (4)

where 0 < K < N - 1. The arguments of z(t; I) show explicit dependence on both time and
the transmitted digits, where I = (l, I 12, .. , 1K)"

Figure 3a is an example of a dispersive channel output. It is very unlikely that such a

smooth waveform would occur for the multipath channel, especially for small L p. This
example is not intended to be precise, but easy to visualize. It will be used to illustrate the
principles of the MLSE algorithm. Figure 3b shows the real complex envelope of a trans-
mitted waveform for the first five bits, and figure 3c shows a hand-sketched drawing of the
dispersed waveform caused by the channel. Additive white noise is not included, only the
desired signal. Note that the waveform in figure 3c consists of overlapping shifted versions of
the channel response of figure 3b. Each shifted waveform is multiplied by the information
bit l, which corresponds to that time shift.

6



TAIL
NOISE PREAMBLE MESSAGE TEXT SEQUENCE

NOISE SIGNALING INTERVAL
INTERVAL

Figure 2. Message format.

~Z 0 lt)

/

a Chann r s TIME,TSECONDS
•0 1 2 3

a. Channel response to transmitted pulse

@ SI =TIME, T SECONDS
0 1 2 3 4 5

b. Transmitted signal waveform (message)
Zt)

I%% LIP TIME, T SECONDS .

I c. Received signal wave form (and components)

Figure 3. ExampJ. of intersymbol interference resulting from dispersive channel characteristics.
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Figure 4a is another way to draw the dispersed signal waveform. Here the channel
response is shown to be shifted and overlapping. A time slice of the dispersive waveform like
a dissection of a single interval is composed of a sum of modulated chips. The chips are bit
interval partitions of the channel response of figure 3a. In figure 4b the chips are shifted to
the same interval and modulated by the sequence of transmitted bits. For example, the chips
in the j to j+l interval consist of chips from bits I., Ij. l , Ij_2. In general, if the channel
response is dispersed over the L+1 bits, the chips in thej to j+l interval will consist of Ij,

,I 1 , . I L . For binary information digits, there are 2 L+ I waveforms that could be found

in the j to j+l interval, and for an A-ary alphabet there would be AL+ I . The collection of

waveforms can be treated as an M-ary symbol set where M=AL+ I .

Let us identify the M waveforms asQm (t-jT), m=1, 2, . AL+ I or as Q (t-jT; I.)

to show the explicit dependence on the transmitted sequence, where li = (lj, l 1 . IjL).

Outside the interval (T, (j+l) T), the M-ary waveforms are defined to be zero, and inside the
interval some of the waveforms may be the same. The sequence of M-ary waveforms out of
the channel up to time (K+I) T depends upon information digits 1o, 1  K and can be
written

K
Z(t;I1) Q (t-jY; 1.) 0 <t <(K +I)YT (5)

j=0

Figure 5 shows an equivalent model of the transmitter and channel that consists of a
shift register and a waveform table look-up. The M-ary waveform in the interval (iT, (j + I)T)
is completely specified by the digits in the register I. = (I Ij 1... I Each time a new

digit is transmitted the digits shift to the right and form a new "state." This state specifies
the next waveform.

The receiver's job is to observe the received waveform, Y(t), and estimate the trans-
mitted sequence 10, 11, .... N An equivalent receiver could estimate the states of the shift
register by detecting the M-ary waveform. The state of the register is given by the first L
digits. The last digit in the shift register, Ij L , can be omitted since it does not contribute to

the transition from that state to the next. That is, when a new digit comes into the register,
the last digit is shifted out and does not affect the transmitted M-ary waveform.

8
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0 1 o 1 2 13 5IJ-2 i1 -1 I

0 1 2 3 4 5 6 7 8 j-2 i-1 j j+1 j+2

TIME, T SECONDS

Figure 4a. Hybrid representation for dispersed signal waveform.

**1

1 -j-2 'i-1 Ji+

ji-2 j-1 i i+1 TIMETSECONDS

I.

I j+1

2 3 8 POSSIBLE WAVEFORMS

Figure 4b. Chip waveform representation of a time slice of
dispersed signal waveform.
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L .. .. MAP

Q O+(t; j) Zlt) jT~t <(j+1lT

Figure 5. Equivalent transmitter and channel model.

An example of the state transition diagram is given in figure 6 for the example of
L = 2 shown in figure 3b. The two digits in the circles (nodes) are the digits 1j, Ij-I in the
register shown in figure 5. When the shift register transitions from one state to the next, a
waveform Qm(t) is transmitted that lasts for one symbol period T. The shift register is clocked
every T seconds, so the state diagram changes state every T seconds. As an example, if the
register is in state ( 1, 1) and a "-I " enters the register at the left, the register moves to state
(-1,1) and Q4 (t) is transmitted during that interval. If the receiver can trace the states of the
transmitter shift register, it can decode the message. For example, if the receiver knew the
transmitter was in state (1,1), and then received Q4 (t), it would know that the input digit
was a -1 and that the new state of the register is (-1,1).

The optimum procedure for decoding the received sequence is the Viterbi algorithm
(ref 8). The Viterbi algorithm can be explained in terms of the trellis diagram in figure 7,

. which is derived by placing the states in figure 6 into a vertical column and repeating to the
right for each input. The equivalent transmit/channel encoder starts at the left and moves to
the right, one column for each input digit. Let us assume the transmitter precedes the
message with L ones, so that when the message starts, the register is in the all-one's state.

The Viterbi algorithm moves to the right one column for each received bit. For each
node in the new column, the algorithm compares the metric of the two paths from the pre-
vious column that terminate in that node. The algorithm retains the larger of the two metrics
and its associated path history. The smaller metric and its path are discarded. Shown in figure
8 is an example of two paths that merge at level (5) in the trellis diagram.

RECURSIVE METRIC ALGORITHM
The metric for one of the nodes in the trellis diagram is the log likelihood ratio for the

path starting at the beginning of the message and leading up to that node. Since there are
many paths that lead up to a particular ncde, the metric is the log likelihood ratio of the most
likely path. The receiver observes Y(t) and looks for a sequence of transition waveforms cor-
responding to a particular path through the trellis diagram or state diagram of figure 6. If

8Andrew J Viterbi, Convolutional Codes and their Performance in Communications Systems,
IEEE Transactions on Communications Technology, vol COM- 19, no 5, October 1971
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Q6 (t) (P)

Figure 6. State diagram for L =2.

1A [0] [1] 12) [3] [41 [5]

INFORMATION SEQUENCE - -1 1 1 -1

Figuire 7. Information path for -1 -1, 1,,[-1.



to] [11 (2) [31 (41 [51

-1-- * 0 0

Figure 8. Example of two merging paths.

Z(t; 1) in equation (5) is a waveform from 0 < t < (K-iI )T then the log likelihood ratio

(metric) for Z( t; 1) is given by Heistrom (ref 9) as

(K+ I)T

MK+ I (lo, 1, -. IK) Re-~ f Z *(t;l1) YWt dt

0

(K+ I)T

If

* 0

The problem is to derive a recursive formulation for equation (6) in terms of the
transmitted digits so that the metric can be updated at each node as the Viterbi algorithm
progresses through the trellis diagram of figure 7.

If we substitute the expression in equation (5) for Z(t; 1) we get

K K
MK+1 I , 11,** IJI9 - Re I Rj(lj) - > C(Ij) (7)

j=0 j=0

where Rj(Ij) is the output of a filter matched to Q (t-j T; [j) and is given by

(j+])T

R~j(lj) = f Q *(t-jT; lj) YMt dt (8)
iT

9Carl W Heistrom, Statistical Theory of Signal Detection, Pergamon Press. Second Revised edition,
Hungary, 1968



Since there are 2 L+l different sequences that could be represented by lj there are 2 L+l

matched filters.

The variable C(Ij) is the signal-to-noise ratio for the signal waveform Q(t-jT; lj) and
is given by

T
; C(Ij) f IQ(t; jl 2 dt (9)f-

A] 0

Again, there will be 2 L+l signal-to-noise ratio parameters.

We can write a simple recursive formula for equation (6) as

MK+I(Io, I 1 ... 1K = MK(lo, 11 ..... IK-l) + Re RK(IK) -C(IK) (10)

The above recursive formula is used to update the metrics in the Viterbi decoding
algorithm. It was derived simply by creating a model of the dispersive channel analogous to
an M-ary communication system. The difficulty in using this formulation is that the number
of matched filters and the number of signal-to-noise ratio parameters grow exponentially with
the parameter L+I. This parameter is the ratio of the dispersion length to the length of the
bit period. Generation of the matched filters and signal-to-noise parameters for typical dis-
persions and data rates occurring for the hf and underwater acoustic communication channels
could become a computational burden.

The following derivation yields another recursive formula for updating the metrics.
This recursive formula requires only one matched filter and L+1 parameters. This is a signifi-
cant simplification from the M-ary model derivations. However, the derivation is based, not
upon a simple intuitive model of the problem, but upon the mathematical relationships of
the multipath signals (equations 3 and 4) and the likelihood ratio (equation 6). In the above
derivation we used equation (5) to define Z(t; I).

However, Z(t; I) is also given by equation (4) up to time (K + I)T. Equation (5) is
zero beyond (K + I)T, whereas equation (4) contains a "tail" for t > (K + I )T. However, our
integrals stop at (K + I)T and the tail will not be a problem. Substituting equation (4) into
equation (7) gives

K K KMK+I(I 0 , 11, .  Ik )10 = R e  I. I!

j=0 i=o j=0

where we have defined rj and Ci- j as

(j+L+I)T

1J z*(t-jT) Y(t) dt for <K-L

iT
rj=  (12)

KT

f z*(t-jT) Y(t) dt forK-L<j<K

iT

13



and

(K+I)T

Cij 1 z*(t - iT) z(t -jT) dt (13)
2N 4

Note that Ci j 
= 0 when Ii - j I > L and Ci j is Hermitian Ci j Cj*_i

The metric in equation (I I) can be written as

A MK+l(Io,I,...,IK) = Re K-1 K- K-1 I

I lIj* 1 - I I ii Ci-j
j=0 i=0 j=0

K-1

+ReI* rK-2Re IK Ij CK.j - IIK1 2 C o ) (14)

j=0

The previous metric is given by

K-1 K-I K-I
* I MK(Io, II1.... IK-I) = Re 3 Ij* rj - Ij Ci-j (15)

j=0 j=0 j=0

Substituting equation (15) into equation (14) gives the recursive relationship we seek:

MK+I(Io, I, IK) = MK(Io, II, • IK)

L

+ Re I (rK- 2 k Kj C-IK C0 ) (16)

j=l

where we have simplified the recursive increment term by taking into account the fact that
Cj = 0 for Iji> L.

The recursive relationship in equation (16) requires only one matched filter and L+I

parameters. At time (j+1 )T the receiver samples the output of a filter matched to the channel

14



response and calls this sample rj. Equation (16) is then used to compute the two (for the
binary case) paths into the next node. The path history with the largest metric is retained
and updated by the value of Ij.

In this section, we have shown that the communications channel can be modeled as a
convolutional encoder whose outputs are analog M-ary waveforms instead of sequences
of binary digits. It is known that the maximum likelihood decoder for convolutional codes

.is the Viterbi decoder. However, to implement the Viterbi decoder algorithm, a recursive
relationship for the log likelihood ratio must be known. We have derived a recursive algo-
rithm in equation (16) for the log likelihood ratio for multipath dispersive channels. By
implementing it via Viterbi decoding, we have the optimum signal processing algorithm for
channels with intersymbol interference, the Maximum Likelihood Sequence Estimate (MLSE)
algorithm, as Fornery (1) called it.

The complexity of an algorithm is a measure of how fast a processor must run, or
alternatively, how much circuitry is required to implement it. For the MLSE the complexity
grows exponentially with the spread factor L, which is the product of the channel time spread,
T, in seconds and the information bit rate, R, in bits per second.

The next step is to examine the performance of the MLSE algorithm under the
assumptions under which it was developed. The assumptions include perfect knowledge of
the channel response, time invariance and an upper limit on the channel dispersion. This will

: €be accomplished by simulating the channel itself and the MLSE algorithm on a computer.

1II. MLSE PERFORMANCE FOR KNOWN CHANNEL CHARACTERISTICS

In the following analysis we examine the performance of the MLSE over simulated
hf channels. The simulated channels will be simple two-path channels. The performance
characteristics of the MLSE algorithm are compared with the parallel tone DQPSK (ref 10)
over a multipath channel and these are then compared to optimum performance over a
channel which exhibits no intersymbol interference. To simplify the analysis we have made
several assumptions about our simulated hf channel: the channel is time invariant (ie, no
fading), the channel impulse response is known, and the noise is strictly additive white Gaus-
sian noise.

A Monte Carlo simulation is employed to simulate both the pseudorandom binary
signal and the pseudorandom Gaussian noise samples. The simulation was run on the NOSC
Univac I 110 computer.

SIMULATED CHANNEL

A general two-path channel may be modeled in several different ways, three of which
are illustrated in figure 9. In figure 9a we represent the output of the channel by the output
of a tapped delay line. The output, z(t), is a linear combination of the input and replicas of
the input delayed by 2T seconds. Next, for ease of mathematical manipulation, the impulse
response shown in figure 9b is convenient. Here the output can be represented by the convo-
lution of the input with the impulse response. The ray trace diagrams of figure 9 c give

10ML Doelz, ET Heald, and DL Martin, Binary Data Transmission Techniques for Linear Systems,
Proceeding§ IRE, vol 45, 656-661, May 1957
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Figure 9. Three models illustrating a two-path channel.
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physical insight into how this channel may occur. Figure 10 shows the specific impulse

responses used in the simulations.

Figure II graphically displays the amplitude spectrum as a function of frequency for

the channel shown in figure I0a. Performance of the parallel tone DQPSK on this channel is

determined primarily by the two nulls in the amplitude spectrum. Most of the errors occur

in the nulls where the signal-to-noise ratio is significantly less than at the other frequencies.

The bit error rate for parallel tone DQPSK is calculated by averaging the bit errors of

each tone over all the tones; ie, with 16 tones.

E , jth tone (17)

e 16 j=l e /N

Since the probability of a bit is 2/3 the probability of a symbol error, all one needs is the

symbol error rate of the jth tone. Unfortunately, no simple exact expression exists for the

h(t)

II

IFv/

T 2T 3T

b. a1'=a2=VT7
-

Figure 10. Channel impulse response for two conditions of simulation.
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Figure 11. Amplitude-frequency response for a 16-channel, parallel tone, DQPSK
modulation for the channel response of figure 10a.

symbol error rate. For large signal-to-noise ratios (larger than 5dB) a good approximation
was derived by Cahn (ref 11 ). By his approximation, the average bit error rate for 16 parallel
tone DQPSK becomes

r / \b 1 / : 1Efc/ 2-- o sin (18)
E[PBe /bNo) J=16 (k3) 1 eN 8)

Eb~j) No (12~a2 cosjctr).

E(') is the expectation operator and

o = 2 is the differential time of arrival.

PERFORMANCE EVALUATION

As a consequence of the above analysis a bit error performance comparison was made
between the parallel tone, the serial bit stream (MLSE), and the ideal (no multipath) binary

1 ICR Calm, Combined Digital Amplitude and Phase Modulation, IRE Transactions on Communications
Syste , vol CS-8, p 150-155, September 1960
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7.

BPSK approaches. The results of this comparison are shown in figure 12. The impulse
response of the channel is shown in the upper right of each graph. The data rate for each
case is 2400 bits per second.

The curves illustrate the poor performance of the parallel tone approach. The serial
bit stream approach using the MLSE has a 20-dB advantage over the parallel tone design and

performs essentially as well as BPSK under ideal (no multipath) conditions.
IV. MLSE PERFORMANCE FOR UNKNOWN CHANNEL CHARACTERISTICS

The MLSE developed up to this point assumes that z(t) is known. This z(t) is used to
set up the matched filter and the autocorrelation function Cjk used in the log likelihood ratio
for the recursive calculation of the metrics. In this section we develop a model for charac-
terizing the channel response, z(t), and algorithms for estimating the parameters used to
characterize this z(t).

The output of the channel can be represented as the sum of time shifted versions of
the input signal as in equation (2), which is repeated here

Lp

zKt) = ia(t) x(t-rQ) (2)

To put the problem in a form which is easily characterized, several assumptions are made:

(1) Assume that ak(t) can be treated as a constant over the interval of
interest; ie, updates of the channel response will be made faster than
the rate of change of the channel.

(2) Assume that samples of the input s(k) = S(t) It = kT and output
y(k) = Y(t)It = kT are available for a period known as the preamble.

(3) Assume that the received output can be represented as

L

y(k) =  g(k) S(k- Q)+ n(k)
Q=0

z(k) + n(k) (20)

Note that, in general, gq(k) is not equal to aq(t) in equation (2). The g(k) are the complex
tap gains for the uniformly spaced tapped delay line. The aY (t) are the complex gains which
correspond to the nonuniformly spaced delays, Tr. A restriction on L is that it must satisfy
the requirement that L times the sampling interval, T, is greater than or equal to the maxi-
mum possible signal delay for all signals of interest. The representation of the channel response
as the output of a tapped delay line is shown in figure 13. The parameters gQ(k) are the tap
gains which are complex and may be of magnitude less than one.
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Figure 13. Tapped delay line representation of channel response.

Once we have set up this structure the output response can be estimated by estimat-
ing

L

z(k) gQ(k) s(k - Q) (21)

So, the problem reduces to estimating the tap gains gk(k), Q =0, 1. L from the received
sequence y(k). Once L and the sampling interval are known, the channel response can be com-
pletely specified by g(k). The Kalman filter algorithm (KF) and a least mean squares algorithm
(LMS) will be used as channel estimators. The channel estimators characterize the channel by
estimating the tap gains gQ(k). From these estimated tap gains, estimates of the channel
response can be formed. These can be compared to the actual output of the channel. The
criterion used in this section to compare the performance of the estimation algorithms is
error squared averaged over several simulations of the same channel. As yet there is no analyt-
ical correspondence between the mean squared error of the estimation algorithms and the
performance of the MLSE. In reference (12) the performance of the MLSE when used with
"mismatched" channel estimates is discussed. However, reference 12 addresses only the case
in which a specific mismatch occurs. Further work needs to be done for the case of random
mismatches which occurs when using an estimation algorithm on time variant channels. The
estimates from one of these channel estimators will be used as parameter inputs to a matched

12Pennoyer ' BL, Performance of an Adaptive or Mismatched Maximum Likelihood Sequence

Estimation Receiver, PhD thesis, University of Southern California, February 1977
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filter and a maximum likelihood sequence estimator whose output is the estimate of the
information sequence. This systems is shown in figure 14.

CHANNEL ESTIMATOR ALGORITHMS

In this section the general equations for the KF and the LMS are presented, and these
are applied to the channel estimation problem. Since we are assuming that the channel is
varying slowly with time we can view the tap gains as constants over our interval of interest.

g(k) = g(k - 1) (22)

where g(k) denotes the vector of tap gains at time k

T
gT(k) = [g 0 (k) gl (k)... gL(k)]

The measurement y(k) is simply the sampled values of the received signal. Then we have

y(k) = z(k) + n(k) (23)

= HT (k) g(k) + n(k)

where H(k) is the vector of delayed inputs.

HT (k) = fs(k) s(k - ).. s(k - L))

and n(k) is a white, zero-mean random noise sequence with variance R(k).

RECEIVED
PREAMBLE CHANNEL
DATA _ _ ESTIMATOR

AUTO-CORRELATIONS Cjk

TAP GAINS

MESSAGE
T E X T D A T A C H A N E V IT HB I A .

Figure 14. Receiver model.
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Kalman Filter Algorithm

Several additional assumptions are needed before the Kalman filter can be imple-
.; mented. The vector w(k), known as the plant noise, is added to equation (22).

g(k)=g(k- I)+w(k - 1) (24)

This quantity is introduced in order to compensate for numerical precision problems of the
system. The noise sequence w(k) is assumed to be zero-mean with covariance matrix Q(k).
The initial conditions of the tap gains, the measurement noise and the plant noise are all
assumed to be uncorrelated with each other. The basic Kalman filter algorithm used is the
following (ref 13, 14):

(1) Initialize filter parameters. Set k =0.
(2) Increment index k = k + I

(3) Form projected estimate of covariance matrix
V'(k) = V(k- 1) + Q(k - 1) (25)

(4) Compute Kalman gain

K(k) = V'(k) H(k) (HT(k) V'(k) H(k) + R(k)) - 1  (26)
(5) Form estimates of tap gains

g(k) = g(k - 1) + K(k) [y(k) - HT(k) g(k - I)] (27)

(6) Compute covariance of estimate

V(k) = [I - K(k) HT(k)I V'(k)1 (28)

Go to step (2)

Initial estimates of all tap gains were taken to be zero. The initial covariances of the
estimates were taken to be large to correspond to the case that very little was known about
the initial estimates. This ensures that the initial estimates will not be weighted too heavily.
The plant covariance matrix Q(k) was taken to be a small positive scalar times the identity
matrix to compensate for modeling errors and computational errors accumulated when run
on a digital computer with finite word size. The squared error between the estimated output
and the actual output averaged over 100 simulations is plotted in figure 15 for the simple
two-path channel shown in figure IOa.

13HW Sorenson, Kalman Filtering Techniques, Advances in Control Systems, vol 3, p 219-292 1966
14 HW Sorenson, Filtering and Random Processes in Control, class notes
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LMS Algorithm

The basic LMS algorithm used is the following (ref 15, 16):

(1) Initialize parameters

(2) Form error in estimate

e(k)= y(k) -HT (k) g(k) (29)

(3) Form new estimate

(4) Increment index. Go to (2)

As for the Kalman filter, the initial tap gain estimates were taken to be zero. Unlike
the Kalman filter, the LMS filter requires no initial covariance estimate or plant covariance
matrix.

5B Widrow, et a], Stationary and Nonstationary Learning Characteristics of the LMS Adaptive
Filter, Proceedings of the IEEE, vol 64, no 8,8 August 1976, p 1151-1162

16 B Wid.-ow, Adaptive Filters 1: Fundamentals, SEL-66-1 26 Stanford Electronics Laboratories,
Stan ford, California, December 1966
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For the LMS, the scalar parameter p is a convergence factor that controls stability
and rate of adaptation. A sufficient condition on p for convergence is

0<P< 1 (31)., L+ I

Two other criteria used for deciding the value of p to be used are its effect on filter misadjust-
ment and speed of adaptation. The misadjustment M due to noise is defined as the ratio of

average excess mean square error (mse) to minimum mse

1M = average excess mse
minimum mse

For the LMS algorithm, under the conditions assumed above

M =p(L+ 1) (32)

The time constant of the filter, T, can be written as

A r~ = 1 (33)4.u

Tradeoffs between steady-state mean square error and rate of adaptation must be made. This

is done by selecting the appropriate value of p. Figure 16 demonstrates the effect of two
different values ofp on the same channel. The squared error is averaged over 100 realizations.
The value of p = .01667 converges faster than a value of p = .008335. At the same time a value
of p = .01667 has a higher mean square error than does a value of p = .008335.

* The LMS and KF estimation algorithms are compared in figure 17. There are advan-
tages and disadvantages to each of them. The Kalman filter converges more rapidly to a
smaller mean square error than does the LMS filter. However, this improvement in perform-
ance has been obtained at the cost of computational complexity. The Kalman filter requires
computations, at each iteration, on the order of the square of the number of parameters to be
estimated. The LMS only requires a linear multiple of the number of parameters to be esti-
mated but does not converge very rapidly nor does it converge to the optimal estimate.
Another problem encountered when using the LMS is in the choice of a value for p. For each
preamble length and desired accuracy (in terms of mean square error) a best value of P can be
found, but this value may produce very poor results when used on another case. The Kalman
filter does not suffer from this drawback.

EVALUATION OF MLSE WITH ESTIMATOR ALGORITHMS

This section examines the performance of the Maximum Likelihood Sequence
Estimator when estimates of the channel parameters are used instead of the actual channel
parameters. The derivation of the MLSE in section 11 and the performance curves of section
III were obtained under the assumption that the channel was known and time invariant. The
Viterbi algorithm from section II will be combined with the estimation algorithms from the
first part of this section to examine the performance of the MLSE over an unknown (but
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still time invariant) channel. The message format used, shown in figure 2, includes a preamble.
This preamble, which is a PN sequence known at both the transmitter and receiver, is used to
estimate the channel response. The channel estimate is used to set up the matched filter and
initialize the metrics which the Viterbi decoder requires. The problem is that these channel
estimates will never exactly equal the actual channel parameters. They will fluctuate around
the actual values. This section will show, for specific cases, how the estimates affect the per-
formance of the MLSE. Upper bounds on the performance of the MLSE with mismatched
channel estimates are given in reference (17). In this section actual simulation results are
given.

We have taken two approaches to implementing a channel estimator. One, the Kalman
filter, achieves a better estimate in shorter time but at the expense of a heavier computational
burden. The other, the LMS filter, does not impose so heavy a computational burden but
takes longer to converge to a poorer estimate. First, the performance of the MLSE with a
long preamble will be examined. Both Kalman filter and LMS filter will be simulated. Next,
the performance of the MLSE using the Kalman filter and the LMS filter over a much shorter
preamble will be examined. Then the performance of the MLSE with the LMS estimator will
be examined in more detail. It will be shown that in addition to the problem of slow con-
vergence to suboptimal estimates the LMS suffers from the problem of choice of suitable
values for p.

Figure 18 shows the performance of the MLSE with a preamble of length 1000 bits.
The channel impulse response for the performance curves is shown in the upper right comer
for each graph. These simple two-path channels are the same as the simulated channels
utilized in previous sections of this report. The performance of the Viterbi decoder with the
LMS estimator is compared with that of the Viterbi decoder with the Kalman estimator for
preambles of length 1000. This a relatively long preamble. The Kalman filter approaches the
optimal estimate as the length of the preamble increases. Thus, the performance of the MLSE
with a Kalman filter and long preamble should approach the performance of the MLSE over
a known channel. For a preamble of this length using the LMS estimator the appropriate
value of p can be chosen to minimize the mean square error. This can only be done with a
long preamble since the rate of convergence of the LMS filter is linearly proportional to the
value of p while the residual mean square error is inversely proportional to p. Figure 18 shows
for this length preamble the LMS does nearly as well as the Kalman filter. The conclusion to
be drawn from this is that for a very long preamble the LMS will perform nearly as well as the
Kalman as long as the value of p is chosen wisely. As will be demonstrated later it is important
that the appropriate value of p be chosen when using the LMS filter. Use of a long preamble
demonstrates that the problem of the unknown channel characteristics can be solved.

In many situations a long preamble is not a practical solution to the problem of
estimating the channel response for the MLSE. A much shorter preamble will often be re-
quired. As a result, the effect of a much shorter preamble length will be discussed. Figure 19
shows the performance of the MLSE with a preamble length of 50 using both the LMS and
the Kalman filter estimation algorithms. Once again the same two-path channels are used.
The performance of the Kalman with preamble length 50 is degraded slightly from the case
of the Kalman with preamble length 1000. The difference is no more than 0.5 dB. In many
cases the decrease in overhead and computational burden that is achieved by using the

17Magee, FR Jr, JG Proakis, Adaptive Maimum-Likelihood Sequence Estimation for Digital

Signaling in the Presence of Intersymbol Interference, IEEE Transactions on Information
!bIM, vol IT-19, January 1973
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shorter preamble length compensates for the less than 0.5 dB loss in performance. The LMS
filter, using the best A value, is not significantly degraded either. Figure 19 also shows that
the degradation caused by using the shorter preamble lengths with the LMS filter is no more
than 0.5 dB. Still the Kalman filter performs better than the LMS filter. This is to be
expected since the Kalman filter was designed to minimize the mean square error at each
iteration of the algorithm while the LMS filter uses a noisy gradient technique. Figure 19
demonstrates that a shorter preamble length is a definite possibility for use with the MLSE.
Depending on the situation in which one uses the MLSE one would choose the proper estima-
tor algorithm and preamble length to achieve the desired goals under the operational con-
straints of the system. This choice would take several things under consideration. Included
should be the amount of computation allowable, the degree of accuracy desired, and the

*' length of time to be allowed for the estimation process.

In some situations accuracy may not be so important a design criterion as computa-
tional burden when selecting an estimator algorithm. In this type of situation one might
choose the LMS estimation algorithm. The important thing to remember when using the
LMS is that the proper value for p must be used. Figure 20 shows what can happen when a
poor value of p is used. Here, the optimal value and a suboptimal value are used with a 50-bit
preamble and a 1000-bit preamble. As can be seen, the results are poor at best, and for
preamble length 50 the results are disastrous. This demonstrates the importance of exercising
discretion in choosing a value forp.

In this section the problem of the unknown channel was solved for the Maximum
* Likelihood Sequence Estimator. Performance curves for the MLSE using a channel estimator

are given. The use of a channel estimator does not seriously degrade the expected perform-
ance of the MLSE, as can be seen in figure 2 1* Judicious selection of the estimator algorithm,
preamble length, and values for p (for the LMS) must be made in order to ensure good per-
formance of the MLSE under operational conditions. The longer the preamble, the better
the performance. The Kalman filter is the best estimator to use. However, it suffers from the
disadvantage that the number of computations at each iteration of the algorithm is propor-
tional to the square of the number of parameters to be estimated. The LMS eases the compu-
tational burden, the number of computations required at each iteration being linearly propor-
tional to the number of parameters. However, it is not optimal and the parameter P must be
chosen carefully.

V. MLSE FOR TIME VARYING CHANNELS

The development and analysis of the Maximum Likelihood Sequence Estimator up to
this point has assumed that the channel is time invariant. In many real-time scenarios this is
not a valid assumption. However, the channel is often changing slowly enough so that the
variations in time will have little effect on the performance of the MLSE. Alternatively, the
message sequence may be short enough so that the variations in time do not affect it. The
work done on the MLSE up to now has been for those channels in which variations in time
would have little or no effect on the performance of the MLSE. This section extends the
MLSE to the case in which time variations occur, the adaptive MLSE. All the examples in
this section use the Kalman filter to estimate the channel response during the preamble and
also during the periodic updates.

Here, the preamble consists of 100 bits and the message of a million bits.
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Time variations of the channel (response) will often degrade the performance of the
MLSE to the point at which communication across the channel is extremely poor if not
impossible. The variations in channel response will cause the matched filter, which up to this
point has been fixed in time, to become mismatched. When this happens the output of the
matched filter is no longer the correct input to the Viterbi decoder. As can be seen in reference
(17), this causes degradation in the performance of the MLSE. The matched filter must be
modified or updated to keep track of changes in channel response. Alternative approaches to
this problem have been discussed by others in references (18-20).

The approach used here will be referred to as periodic tracking. Here the data stream
must be interrupted and a known pseudonoise (PN) sequence must be transmitted. This PN
sequence has to be known at the receiver as well as at the transmitter. During this burst of
known data the receiver will re-estimate the channel response, set up the matched filter, and
re-initialize the metrics. This could be a problem in some cases. It may be undesirable to
interrupt the information sequence and even more undesirable to send a known sequence
interleaved with the information sequence. Another problem will be that of determining at
what intervals the known sequence should be sent. This would probably be a function of
signal-to-noise ratio, rate of change of the channel, and length of the total message.

The results obtained for the performance of the MLSE in sections III and IV were
obtained by simulating the signals and noise on a computer. The results in this section were
obtained by using data from an on-the-air-hf field test. The field test was conducted by trans-
mitting signals over the hf channel from Point Mugu to Point Loma. The tests were conducted
at different times of day in order to get varying channel responses. With different channel
responses the MLSE algorithm could be tested for different multipath structures. It was -.60
done this way to test the algorithm on enough different channels to see whether this approach
would be feasible for the Navy to use as a communications system. A known pseudorandom
number sequence was used to generate the sequence of bits sent over the channel. The
sequence was sent at a high signal-to-noise ratio. At the receiver the signals were recorded
onto tape along with information concerning which sequence was sent. The tapes were pro-
cessed at a later time on the Univac to obtain the curve for signal-to-noise ratio versus bit
error rate obtained in the earlier sections. This was done by assuming that the signal tapes
were at a high enough signal-to-noise ratio that they could be considered as pure signal-a
simplification which made it possible to obtain the bit error rates at varying signal-to-noise
ratios. The signals plus noise were obtained by adding white Gaussian noise to the data from
the signal tapes with appropriate weightings to obtain the desired signal-to-noise ratios. As
can be seen in figure 24, the recorded SNR limited the simulation curves in some cases. Our
main interest was to see whether these curves were comparable to the curves we obtained via
simulation. For each of the recorded signals in figures 22-25, appendix A contains additional
information on the channel pulse response (matched filter output) and signal-to-noise ratio
(ref 21).

18 Ungerboeck, G, Adaptive Maximum-Likelihood Receiver for Carrier-Modulated Data Transmission
Systems, IEEE Transactions on Communication, vol COM-22, no 5, MAy 1974

19 Magee, FR Jr, A Comparison of Compromise Viterbi Algorithms and Standard Equalization Technique
Techniques over Band-Limited Channels, IEEE Transactions on Communication, vol COM-23,
no 3, March 1975

20 Falconer. DD, & FR Magee, Jr, Adaptive Channel Memory Truncation for Maximum-Likelihood
Sequence Estimation, Bell System Technical Journal, vol 9, p 1541-1562, November 1973

2 1Hoff, LE, AR King, Skvwave Communication Techniques, NOSC Technical Report 709, September
1981
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The first example of MLSE performance on real data is given in figure 22. This
example of an hf channel is a simple one, the channel consists of only the surface wave. It
does not exhibit any multipath structure nor does it exhibit any time variations. Figure 22
shows the performance of the MLSE on this simple channel for a signal lasting 41 seconds or
99000 bits. The nonadaptive MLSE performs well for this case in which no multipath or
fading is present.

The next example of MLSE performance on real data is for a channel exhibiting both
a surface wave and a skywave. Here the two paths are separated by .3 ms. The first path
(surface wave) is down 10 dB in power from the second path. Figure 23 shows the perform-
ance results for the nonadaptive MLSE as well as for the adaptive MLSE. The results were
obtained for a signal lasting 37 seconds. The performance of the adaptive MLSE is clearly
better than the performance of the nonadaptive MLSE. This indicates that the channel ex-
hibits some sort of time variation over the 37 seconds. The adaptive MLSE is able to decode
the output of this unknown, time variant channel with good results. Otherwise, even when
using the nonadaptive MLSE, reliable communication over this channel would be impossible.

Figure 24 shows the performance of the MLSE on a third hf channel for a signal last-
ing 25 seconds. Here, the nonadaptive MLSE is compared with the adaptive MLSE with two
different update periods. The shorter the update period (or the faster the update rate), the
better the performance. This channel consists of a single path which is not fading but is ex-
hibiting some phase variations.

The fourth example is a channel consisting of a surface wave and two skywaves. Here
the surface wave is down 5 dB from the strongest skywave, which is delayed by .3 ms. The
second skywave is delayed by 2 ms and is 13 dB down from the first skywave. This channel
exhibits fading. Figure 25 shows the performance of the nonadaptive MLSE and the adaptive
MLSE with 5k updates. Here, the improvement obtained using the adaptive MLSE is signifi-
cant.

Results obtained from an hf field test using the MLSE to decode the received signal
show that this approach to processing the data received over unknown, time varying multi-
path channels gives good results.

The fifth example is a channel consisting of a surface wave and a skywave. Here, the
surface wave is 10 dB down in power from the skywave.* Some fading occurs in this example
but the adaptive MLSE handles the fading well, as can be seen in figure 26. Figure 26 shows
the performance of the nonadaptive MLSE versus the performance of the adaptive MLSE with
two update rates. The MLSE with update rate of 5k bits does slightly better than the MLSE
with update rate of 10k bits.

VI. CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

The MLSE can be made adaptive by interleaving short reference sequences with the
message sequence. An estimation algorithm is applied to these sequences to estimate the
changing channel response. Tests on simulated nonfading multipath channels demonstrate
that the adaptive MLSE is an effective algorithm for unknown, nonfading multipath channels

The skywave is delayed .3 ms from the surface wave.
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Figure 26. Performance of adaptive and nonadaptive MLSE on hf data obtained 13 May 1981 at 12 10.
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and that it is superior to signaling schemes currently used for multipath channels. By using
signals recorded during an hf field test, we have shown that the adaptive MLSE can be ex-
tended to time variant (fading) multipath channels. The error rate performance depends upon
the channel rate of change and the channel estimate update rate.

RECOMMENDATIONS

1. Further testing of the adaptive MLSE on time variant multipath channels is
necessary to define channel estimate update rates. A careful comparison of the adaptive
MLSE and other signaling schemes would provide valuable information to system engineers.

2. Because of the very fast rate of change of some military channels, a continuous
tracking technique should be developed for the adaptive MLSE.

3. Because of the large dispersion found on some military communication channels,
the MLSE using the Viterbi algorithm will not be practical in many cases. Sequential decoding
algorithms, whose complexity grows only linearly with channel dispersion, should be developed
for the MLSE algorithm (ref 22).

4. The MLSE should be tested on channels with impulsive noise and the bit error
rate results analyzed. The sensitivity of the MLSE algorithm to bursts of impulse noise should
be determined.

2 2 Hoff, LE and DR Bean, The Stack Algorithm for Sequential Decoder, NOSC Technical Note
924, 30 October 1980
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APPENDIX A: STATISTICS OF RECORDED HF SIGNALS

Table A-I summarizes the characteristics of the recorded signals in figures A-I
through A-5.

Day-Time Mode Delay, ms Power, dB Freq, MHz RF BW, kHz Tape (S+N)/, dB

May 13 1030 S 0 0 3.357 2.4 22.1

S 0 -10 2.4 24.4
May 13 1210 E 0.3 0 6.835

S 0 - 5 2.4 17.1
May 13 1620 E 0.3 0 5,785

F 2.0 -13
'I

S 0 -10 2.4 27.3
May 13 1740 E 0.3 0 5.785

May 14 1720 S 0 0 2.4 20.6

Table A-I. Characteristics of recorded hf signals.
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Figure A-1. Hf signal recorded 13 May 1980 at 1030.
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Figure A-2. Hf signal recorded 13 May 1980 at 12 10.
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Figure A-3. I-f signal recorded 13 May 1980 at 1620.
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Figure A-4. Hf signal recorded 13 May 1980 at 1740.
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Figure A-5. Hf signal recorded 14 May 1980 at 1720.
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